

Biophos Ballance Agri-Nutrients

Chemwatch Hazard Alert Code: 1

Issue Date: **01/11/2019** Print Date: **28/06/2021** L.GHS.NZL.EN

Version No: 3.1.3.7
Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Produ	ICT.	Iden	titier

Chemwatch: 6597-97

Product name	Biophos
Chemical Name	Not Applicable
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Details of the supplier of the safety data sheet

	•
Registered company name	Ballance Agri-Nutrients
Address	161 Hewletts Rd Mount Maunganui New Zealand
Telephone	+64 800 222 090
Fax	Not Available
Website	Not Available
Email	customerservices-mount@ballance.co.nz

Emergency telephone number

Association / Organisation	CHEMCALL
Emergency telephone numbers	Freephone: 0800 CHEMCALL (0800 243 622) (24 Hours/ 7 Days)
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Not considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Not regulated for transport of Dangerous Goods.

ChemWatch Hazard Ratings

	Min	Max ı
Flammability	0	:
Toxicity	1	0 = Minimum
Body Contact	1	1 = Low
Reactivity	0	2 = Moderate
Chronic	0	3 = High 4 = Extreme

Classification [1]	Not Applicable
Determined by Chemwatch using GHS/HSNO criteria	Not Available

Label elements

Label elements	
Hazard pictogram(s)	Not Applicable

Issue Date: 01/11/2019 Print Date: 28/06/2021

Signal word Not Applicable

Hazard statement(s)

Not Applicable

Precautionary statement(s) Prevention

Not Applicable

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name		
Not Available	>60	phosphate rocks		
Not Available	1-10	saw dust, as		
Not Available		wood dust softwood		
Not Available	1-10 fish emulsion			
Not Available	<1 additives, nonhazardous			
Legend:	Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available			

Page 2 of 12

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to fluorides:

- Fluoride absorption from gastro-intestinal tract may be retarded by calcium salts, milk or antacids.
- Fluoride particulates or fume may be absorbed through the respiratory tract with 20-30% deposited at alveolar level.
- Peak serum levels are reached 30 mins. post-exposure; 50% appears in the urine within 24 hours.
- For acute poisoning (endotracheal intubation if inadequate tidal volume), monitor breathing and evaluate/monitor blood pressure and pulse frequently since shock may supervene with little warning. Monitor ECG immediately, watch for arrhythmias and evidence of Q-T prolongation or T-wave changes. Maintain monitor. Treat shock vigorously with isotonic saline (in 5% glucose) to restore blood volume and enhance renal excretion.
- ▶ Where evidence of hypocalcaemic or normocalcaemic tetany exists, calcium gluconate (10 ml of a 10% solution) is injected to avoid tachycardia.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Sampling Time Comments Determinant Index Fluorides in urine 3 mg/gm creatinine Prior to shift B, NS End of shift B, NS 10mg/gm creatinine

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also observed after exposure to other exposures.

Chemwatch: 6597-97 Version No: 3.1.3.1

Page 3 of 12

Biophos

Issue Date: 01/11/2019 Print Date: 28/06/2021

SECTION 5 Firefighting measures

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility None known.

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
 - Wear breathing apparatus plus protective gloves in the event of a fire.
 - Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area. Fire Fighting
 - ▶ DO NOT approach containers suspected to be hot.
 - ▶ Cool fire exposed containers with water spray from a protected location.
 - ▶ If safe to do so, remove containers from path of fire
 - Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

▶ Non combustible. Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of:

hydrogen fluoride phosphorus oxides (POx)

May emit poisonous fumes. May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up waste regularly and abnormal spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). Dampen with water to prevent dusting before sweeping. Place in suitable containers for disposal.
--------------	--

▶ After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Major Spills

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials. Safe handling
 - ▶ When handling, DO NOT eat, drink or smoke
 - ▶ Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 - ▶ Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

- Store in original containers. Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Other information Store away from incompatible materials and foodstuff containers.
 - Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable containe

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

Issue Date: **01/11/2019**Print Date: **28/06/2021**

Storage incompatibility

► Contact with acids produces toxic fumes

- X Must not be stored together
- May be stored together with specific preventions
- + May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	wood dust softwood	Wood dust, soft	2 mg/m3	Not Available	Not Available	†-This is an interim WES and WorkSafe considers it may not be protective for all workers. As such, caution should be applied in using the WES for health risk assessment. WorkSafe intends to lower the WES in the future for the following substances: - Chromium VI compounds, as Cr Hydrogen sulphide: Interim WES-TWA of 5ppm and STEL of 10ppm. Propose to change to WES-TWA of 1ppm and STEL 5ppm in the year 2022 Nitrogen dioxide: Interim WES-TWA of 1ppm. Propose to change to WES-TWA of 0.2ppm in the year 2022 Silica-Crystalline (all forms): Interim WES-TWA of 0.05mg/m3. Propose to review the WES again in the year 2022 Wood dust, softwood: Interim WES-TWA of 2mg/m3. Propose to change to WES-TWA of 1mg/m3 in the year 2022. WOOD SPECIES: HARDWOOD AND SOFTWOOD CLASSIFICATION LIST Hardwood: Taraire; Tawa; Akeake; Kohekohe; Hinau; Fuchsia; Broadleaf; Black Maire; Rewarewa; Pukatea; Manuka; Kanuka; Mangeao; Pohutukawa; Southern Rata; Northern Rata; Southern Beech; Kowhai; Puriri; Kamahi. Softwood: Kauri; Pine; Silver Pine; Pink Pine; Yellow-Silver Pine; Rimu; Kaikawaka (New Zealand Cedar); Tanekaha; Miro; Matai; Totara; Kahikatea; Macrocarpa

Emergency Limits

Ingredient	TEEL-1 TEEL-2			TEEL-3
Biophos	Not Available Not Available			Not Available
Ingredient Original IDLH		Revised IDLH		
wood dust softwood	Not Available		Not Available	

MATERIAL DATA

It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- ▶ cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction

Appropriate engineering

▶ permit greater absorption of hazardous substances and

controls

acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.

Chemwatch: 6597-97 Page 5 of 12 Issue Date: 01/11/2019 Version No: 3.1.3.1 Print Date: 28/06/2021 **Biophos**

- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed

Personal protection

Eye and face protection

► Safety glasses with side shields.

Chemical goggles

▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present

- ▶ polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocaoutchouc
- ► polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161,10.1 or national equivalent) is recommended
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term
- use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 480 min

- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion
- or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed

moisturiser is recommended

NOTE:

The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Body protection

Hands/feet protection

See Other protection below

Other protection

Overalls P.V.C apron

Barrier cream.

Issue Date: **01/11/2019**Print Date: **28/06/2021**

- ► Skin cleansing cream.
- Eve wash unit.
- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Light fawn to brown powders; does not mix with water.		
			ı
Physical state	Divided Solid	Relative density (Water = 1)	1.2
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (%)	Not Applicable
Vapour density (Air = 1)	Not Applicable	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Chemwatch: 6597-97

Page 7 of 12 **Biophos**

Issue Date: 01/11/2019 Print Date: 28/06/2021

Information on toxicological effects

Version No: 3.1.3.1

Not normally a hazard due to non-volatile nature of product

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result

Inhaled

Acute effects of fluoride inhalation include irritation of nose and throat, coughing, chest discomfort, chills, fever and cyanosis (blue lips and skin). Even brief exposure to high concentrations of inorganic fluoride may cause sore throat, chest pains, pulmonary oedema, and in rare cases irreparable damage to the lungs, and death

A single acute over-exposure may cause nose bleed. Pre-existing respiratory conditions such as emphysema, bronchitis may be aggravated by exposure. Occupational asthma may result from exposure

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

Fluoride is a general protoplasmic poison which appears to produce at least four major functional derangements; (1) enzyme inhibition, (2) hypocalcaemia, (3) cardiovascular collapse and (4) specific organ damage.

Hypocalcaemia which leads to severe reductions in plasma levels of both total calcium and ionic calcium, may appear several hours after exposure producing painful and involuntary muscular contractions (tetany) initially of the extremities (carpopedal spasm, twitching of limb muscles, laryngo-spasm, cardiospasm etc). Cardiovascular collapse is probably the principal cause of death in acute fluoride poisoning with sinus tachycardia the commonest cardiac finding and serious cardiac arrhythmias also common. Poisonings also cause major adverse effects on the brain and kidneys

Toxic effects may include headache, excessive salivation, rapid movements of the eyeball (nystagmus) and dilated pupils. Convulsions may occur but lethargy, stupor and coma are more common. Renal pathology (acute congestion) has been described in human casualties

Skin Contact

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting

Eye

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or

Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.

On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer.

Common chronic responses to wood dust exposures are dermatitis, simple bronchitis and non asthmatic chronic airflow obstruction. Wood is an organic substrate for growth of micro-organisms and fungal spores, these readily become airborne with wood dust and have caused a variety of respiratory infections Various woods, mainly tropical varieties, are able to induce allergies in joiners, carpenters, cabinet makers and modelmakers. Allergies of the immediate type (rhino conjunctivitis, bronchial asthma, urticaria), caused by contact with dusts produced during wood-working and those of a delayed type (contact eczema) caused by both the dust and by direct contact with the solid wood, are seen in an occupational setting. Because of the large number of substances found in wood, only a few low molecular weight allergens have been isolated and identified; these are mostly guinone or flavone derivatives. Many of the constituents of wood may also cause primary irritation. Irritation of the skin, eyes and respiratory passages are often distinguished from allergic responses with difficulty.

Chronic

The use of skin tests with wood dusts to confirm suspected allergy must be viewed as suspect because the high concentration of wood components which are sometimes applied, can actually produce new sensitisation in test subjects. It should also be noted that cross-reactions or reactions to groups of similar substances, in other woods and also in other herbaceous plants can also occur. The substances in wood responsible for respiratory allergies are probably mostly high molecular weight substances. Wood dusts may induce asthmatic reactions of both the immediate and delayed types, and occasionally, both. Positive results in bronchial provocation tests, are often, but not always, associate with positive results in skin tests and IgE induction. Bronchial provocation tests may produce different results dependent on whether they are carried out with course or fine dusts or with Ivophilised aqueous extracts. Very course dust may produce false negatives and very fine dust may produce false positives (irritation). Non-allergenic bronchial and pasal irritation are seen frequently.

Certain exotic woods contain alkaloids which may produce headache, anorexia, nausea, bradycardia and dyspnea. Agents used to treat wood (preservatives, fungicides, stains, glues, pore fillers) may themselves be responsible for allergic reaction. Other allergic reactions may be provoked by liverworts ("Frullania dermatitis"), lichens, fungi (e.g. bronchopulmonary aspergillosis), actinomycetes or other plants which grow on wood. Microorganisms and fungal spores, associated with wood, may become airborne and provoke allergic responses. Other chronic responses associated with exposure to wood dusts include conjunctivitis, simple bronchitis and non-asthmatic chronic airflow obstruction

Epidemiologic studies in furniture workers show an increased risk of lung, tongue, pharynx and nasal cancer (adenocarcinoma). Workers in timber industries, with a history of exposure to wood dust, have shown increased occurrence of lung, liver and vocal cavity cancer. An excess risk of leukaemia amongst mill-wrights probably is associated with various components used in wood preservation. It is now suggested that sinonasal cancers may be caused by both hardwoods and softwoods (1). The causative agent or agents are unknown although certain aldehydes or their quinone oxidation products have been implicated. Exposure standards for the softwoods reflect the apparent low risk for upper respiratory tract involvement among workers in the building industry. A significantly lower exposure standard for hardwoods is based on impaired nasal mucociliary hyperplasia reported to contribute to nasal adenocarcinoma and related hyperplasia in furniture workers. Exposure standards for both hard and softwoods specifically exclude the issue of occupational asthma and related allergic respiratory response associated with exposure to red cedar dusts and similar woods

Biophos

TOXICITY	IRRITATION
Not Available	Not Available

Issue Date: 01/11/2019
Print Date: 28/06/2021

wood dust softwood	TOXICITY	IRRITATION
	Not Available	Not Available
Lamanda	1 Value obtained from Europe ECHA Decistored Substances Acute	toxicity 2 * Value obtained from manufacturaria CDC . Unlane atherwise

Legend:

 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

No significant acute toxicological data identified in literature search.

For wood dusts:

Wood dusts may cause respiratory symptoms including sensitisation and diminished respiratory function and may also be carcinogenic.

OSHA has determined that the health evidence for the toxicity of wood dust cannot be separately distinguished for soft wood and hard wood. A final OSHA ruling however establishes an 8-hour TWA PEL of 2.5 mg/m3 for Western red cedar wood dust, based on its widely recognized ability to cause immune-system-mediated allergic sensitization. Evidence in the record demonstrates the seriousness of this effect.

Wood dust is defined as any wood particles arising from the processing or handling of woods. Hard woods derive from the deciduous broad-leaved flowering species of trees, and soft woods include the coniferous species that do not shed their leaves in the winter. The distinction between hard woods and soft woods is purely botanical. Many so-called "softwoods" are actually hard (i.e., Douglas fir as a softwood is harder than the hardwood birch) and one of the softest woods in existence (balsa) is botanically a hardwood.

Some commentators were of the opinion that many other woods, such as Douglas fir, pine, red and white oak, redwood, walnut, spruce, boxwood, cocobolo, teak, mahogany, and others, should also be designated by OSHA as allergenic in this rulemaking. However, OSHA finds that "it is unlikely that species other than WRC are responsible for large numbers of cases of respiratory allergies".

Other commonly used woods such as oak, birch, redwood, pine, teak, alder, and hemlock, produce pulmonary effects that are less well described than the asthma responses to Western red cedar.

OSHA is establishing a PEL of 5 mg/m3 as an 8-hour TWA and 10 mg/m3 as a 15-minute STEL for hard and soft wood dust, with the exception of Western red cedar. OSHA concludes that promulgation of these exposure limits will substantially reduce the significant risk of material impairment in the form of pulmonary dysfunction (including changes in peak flow, interference with mucociliary clearance, respiratory symptoms, and chronic effects) that is associated with exposure to wood dust at the higher levels that would be permitted in the absence of any limit.

Carcinogenicity The association between occupational exposure to wood dust and various forms of cancer has been explored in many studies and in many countries. In 1987, the International Agency for Research on Cancer (IARC) classified furniture manufacturing in Category I (confirmed human carcinogen) and carpentry in Category 2B (suspected human carcinogen). IARC concludes that there is sufficient evidence in humans for the carcinogenicity of wood dust. (Group 1) Wood dust causes cancer of the nasal cavity and paranasal sinuses and of the nasopharynx. IARC also concludes that there is inadequate evidence in experimental animals for the carcinogenicity of wood dust.

In 1998, IARC issued the results of its detailed analyses of the combined results from 17 studies of nasal cancers and wood dust exposures.

- These analyses supported IARC's earlier conclusions and led to the following findings:
 Excess sino-nasal cancers were seen primarily in studies of European furniture makers
- The degree of risk was increased in workers with the highest level and length of exposure
- Observed risk levels were lower in studies of U.S. populations, possibly due to differences in the types of exposures that had occurred (e.g., exposures to different types of wood).

Based on its analyses, IARC has concluded that wood dust may cause "adenocarcinomas of the nasal cavities and paranasal sinuses". This is a specific type of cancer in a specific region in the respiratory tract. IARC did not find sufficient evidence to associate wood dust exposure with other types of cancer of the nasal cavities (e.g., squamous cell carcinomas) or cancers in other parts of the body, such as the oropharynyx,

hypopharynx, lung, lymphatic and haematopoietic systems, stomach, colon or rectum.

Dust particles may act as carriers for genotoxic agents. Chromium compounds are often present in oak and beech dusts as they are frequently used in the wood-processing industry, particularly as potassium dichromate in stains as well as fixing agents in wood preservatives. Stained furniture is made largely from oak and beech as they contain enough tannic acid to allow for chemical staining Direct genotoxic effects of wood dust extracts were summarized by IARC (1995).

Dust particles may act as carriers for genotoxic agents. Chromium compounds are often present in oak and beech dusts as they are frequently used in the wood-processing industry, particularly as potassium dichromate in stains as well as fixing agents in wood preservatives.

Stained furniture is made largely from oak and beech as they contain enough tannic acid to allow for chemical staining.

Direct genotoxic effects of wood dust extracts were summarized by IARC (1995). Dust particles may act as carriers for genotoxic agents.

Chromium compounds are often present in oak and beech dusts as they are frequently used in the wood-processing industry, particularly as potassium dichromate in stains as well as fixing agents in wood preservatives.

Exposure to hexavalent chromium has been associated with the development of sinonasal cancers.

NIOSH (Ex. 8-47) considers both hard and soft wood dust to be potentially carcinogenic in humans; for soft wood dust, NIOSH recommends a separate 6(b) rulemaking (Ex. 8-47, Table N6B). NIOSH concurred, however, with the proposed PEL of 1 mg/m3 TWA for hard wood dust. Several chemicals were isolated from wood extracts, but only quercetin and delta-3 -carene were shown to be mutagenic (IARC, 1995) Summary of evidence for nasal and sinus cavity cancers. NIOSH (1987a/Ex. 1-1005) concluded that the literature clearly demonstrates an association between occupational wood dust exposure and nasal cancer. English studies first identified this link by showing a 10- to 20-times-greater incidence of nasal adenocarcinoma among woodworkers in the furniture industry than among other woodworkers and 100 times greater than in the general population. In the United States, three studies have reported a fourfold risk of nasal cancer or adenocarcinoma in furniture workers, and another study noted a similar relationship between nasal cancer and wood dust exposure. One other study failed to find such an association for furniture workers, but did find an increase among logging and timber industry workers.

The association between lung cancer and occupational wood dust exposure is inconclusive, although several epidemiological studies have reported increases in lung cancer among wood-dust-exposed workers. A significant excess of malignant tumours of the bronchus and lung in carpenters and joiners. Only construction workers showed a statistically significant increase in lung cancer rate.

Although the data are conflicting, several epidemiological studies of U.S. workers do report increases in the incidence of Hodgkin's disease among woodworkers. This excess is particularly apparent among carpenters.

Data on the relationship between occupational exposure to wood dust and the development of cancers other than nasal, Hodgkin's disease, or lung cancers are insufficient and inconclusive.

Copper chrome arsenic (CCA) is used widely to treat timber in both industrial and domestic situations. CCA is a water-borne preservative and contains copper, chromium and arsenic salts dissolved in water. Exposure to CCA is considered a potential health risk mainly because some arsenic and chromium compounds are known to cause cancer. It is recommended practice that freshly treated timber is stored at the treatment plant for at least two weeks (and up to 6 weeks) to ensure fixation and surface drying of the CCA. Timber for domestic or playground use should also be surface washed prior to distribution.

Exposure to wood dust has long been associated with a variety of adverse health effects, including dermatitis, allergic respiratory effects, mucosal and non-allergic respiratory effects, and cancer. The toxicity data in animals are limited, particularly with regard to exposure to wood dust alone; there are, however, a large number of studies in humans. There are a large number of case reports, epidemiological studies, and

WOOD DUST SOFTWOOD

Issue Date: **01/11/2019**Print Date: **28/06/2021**

other data on the health effects of wood dust exposure in humans. Dermatitis caused by exposure to wood dusts is common, and can be caused either by chemical irritation, sensitization (allergic reaction), or both of these together. As many as 300 species of trees have been implicated in wood-caused dermatitis.

Allergic respiratory responses are mediated by the immune system, as is also the case with allergic dermatitis. Asthma is the most common response to wood dust exposure, and the allergic nature of such reactions has been demonstrated by the presence of IgE antibodies and positive skin reactions on patch testing. The best-studied of the allergic reactions to wood dust is Western red cedar (WRC) asthma; it is estimated that 5 percent of the workers handling this species are allergic to it.

The symptoms of sensitization are redness, scaling, and itching, which may progress to vesicular dermatitis and, after repeated exposures, to chronic dermatitis. The parts of the body most often affected are the hands, forearms, eyelids, face, neck, and genitals. This form of dermatitis generally appears after a few days or weeks of contact.

The chemicals associated with allergic reactions are generally found in the inner parts of a tree, e.g., the heartwood, and the workers most prone to these reactions are those involved in secondary wood processing (e.g., carpenters, joiners, and finishers).

Cereal flours are used in the wood industry to improve the quality of the glues necessary to produce veneer panels and are a potential source of sensitising substances. Cereal alpha-amylase inhibitors have been previously described as important occupational allergens responsible for baker's asthma. IgE proteins belong to the cereal alpha-amylase inhibitor family have been identified in the sera of several wood workers. Exposure to microorganisms that grow on wood can also cause potential health effects. Endotoxins from bacteria and allergenic fungi growing on wood are the main biohazards found in wood processing workplaces. Exposure to these biohazards can cause adverse health effects such as organic dust toxic syndrome (ODTS), bronchitis, asthma, extrinsic allergic alveolitis (EAA), and mucous membrane irritation. The fungi predominantly associated with EAA and ODTS are dry spored species such as Asperdillus and Penicillium.

A large number of studies have demonstrated that occupational exposure to wood dust causes both statistically significant and non-significant increases in respiratory symptoms at exposure levels as low as 2 mg/m3. These symptoms range from irritation to bleeding, wheezing, sinusitis, and prolonged colds. In addition, chronic wood dust exposure causes mucociliary stasis (i.e., the absence of effective clearance) in the nose and, in some workers, also causes changes in the nasal mucosa. Several studies have demonstrated decreased pulmonary function among wood-dust-exposed workers, although other studies have not confirmed these findings. One study relates exposure level to ventilatory function. In that study, exposure to concentrations of 2 mg/m3 of WRC dust caused significant decreases in forced vital capacity and forced expiratory volume. Exposures to concentrations above 3 mg/m3 produced eye irritation.

Mucosal and non-allergic respiratory effects have also been demonstrated. These changes include nasal dryness, irritation, bleeding, and obstruction; coughing, wheezing, and sneezing; sinusitis; and prolonged colds. These symptoms have been observed even at wood dust concentrations below 4 mg/m3. Workers (carpenters, sawmill workers, woodworkers) exposed from 3 to 24 years to the dust of several different hard woods showed radiologic evidence of pulmonary abnormalities. In all of these workers, mucociliary movement was markedly depressed, leading these authors to conclude that exposure to wood dust in the furniture industry for 10 years or more can impair mucociliary clearance. A respiratory survey in pulp and paper mill workers showed that workers exposed to wood dust at a mean total dust concentration of 0.5 mg/m3 had a slight but statistically significant decrease in pulmonary function values compared with controls. The authors concluded that the chemical preservatives used to treat the wood could also have been responsible for these adverse effects.

A further study found that exposure to higher (10+ mg-years/m3), as compared with lower (0 to 2 mg-years/m3), dust concentrations was associated with a statistically significant and higher incidence of decreased pulmonary function. However, dose-response effects were observed only for soft wood (i.e., pine) dusts. Yet another study found no correlation between years of exposure to pine wood dust and pulmonary function. A study of Italian woodworkers showed that the number of wood-dust-exposed workers who had developed anosmia (loss of smell) was significantly higher than in a control group of non-exposed workers. This confirmed was confirmed in other workers exposed to hardwood dusts. Exposure to wood dust can cause chronic obstructive lung disease. Exposure to saw fumes containing terpenes, which is a constituent of wood, also causes chronic obstructive impairment in lung function.

Medium density fibre boards (MDF) is widely used in the joinery and furniture industry as well as in building and housing construction. The major constituents of MDF particle boards are pulverised softwood and urea-formaldehyde resin, both of which are recognised as potential health hazards in the working environment. MDF produces very fine dust during processing and the dust particles act as a carrier of absorbed formaldehyde to the lower airways of the lungs. Wood dust and formaldehyde together have been reported to cause respiratory irritation with symptoms of dryness of the throat, rhinitis and eye irritation as well as occupational skin disease.

Groups of male guinea pigs were injected intratracheally with suspensions containing 75 mg of sheesham or mango wood dust or of hemp or bagasse fibers, or 20 mg of jute fiber. Lung examination revealed that, at 90 days, Grade I fibrosis of the lungs had occurred in the guinea pigs injected with mango or jute, while those treated with sheesham or hemp had developed Grade II pulmonary fibrosis.

In another experiment involving guinea pigs, animals were exposed by inhalation to average respirable dust concentrations of 1143 mg/m3 for 30 minutes/day, 5 days/week for 24 weeks. Histopathological examination showed lung changes, described as moderate to severe, in all exposed guinea pigs. The changes seen included an increase in septal connective tissue components and aggregation of lymphocytes; however, no pulmonary fibrosis or extensive destruction of the parenchymal tissue occurred. The study concluded that exposure to fir bark dust may cause inflammatory changes in the lung.

Two studies examined the effect of exposing Syrian golden hamsters to beech wood dust by inhalation, with or without concurrent administration of the known carcinogen diethylnitrosamine (DEN).

In Study I was given the DEN doses only (positive control), and the fourth group was given no exposure at all (negative control). Four hamsters exposed to wood dust and DEN exhibited squamous cell papillomas of the trachea, as did three animals in the positive control group and one in the negative control group. No differences in organs other than the respiratory organs were seen between the treated and control groups. In Study II, there were 24 animals in each of four groups. Two groups of animals were exposed to fresh beech wood dust at a mean total dust concentration of 30 mg/m3 for six hours/day, five days/week for 40 weeks. All DEN-exposed hamsters had nasal lesions ranging from hyperplasias and dysplasias to papillomas. In addition, half of all DEN-exposed hamsters developed nasal adenocarcinomas, whether or not they had also been exposed to wood dust. Half of the DEN-exposed animals also had papillomas of the larynx and trachea. In the wood-dust-exposure-only group, two of the animals had nasal lesions, one of which was an unclassifiable malignant nasal tumor and the other of which consisted of focal metaplasia with mild dysplasia. The study concluded that exposure to wood dust did not increase the tumour incidence in DEN-exposed animals but did affect the respiratory tract of all exposed animals.

WARNING: Inhalation of wood dust by workers in the furniture and cabinet making industry has been related to nasal cancer [I.L.O. Encyclopedia] Use control measures to limit all exposures.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	X

Legend:

X - Data either not available or does not fill the criteria for classification

🎺 – Data available to make classification

SECTION 12 Ecological information

Toxicity

Biophos	Endpoint	Test Duration (hr)	Species	Value	Source
Бюрноз					

Issue Date: 01/11/2019 Print Date: 28/06/2021

	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
wood dust softwood	Not Available	Not Available	Not Available	Not Available	Not Available

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ▶ Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Product / Packaging disposal
- Recycle containers if possible, or dispose of in an authorised landfill.
- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Not applicable as substance/ material is non hazardous.

SECTION 14 Transport information

Labels Required

Labels Required	Educio Required	
Marine Pollut	ant NO	
HAZCH	EM Not Applicable	

Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
wood dust softwood	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
wood dust softwood	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

Issue Date: **01/11/2019**Print Date: **28/06/2021**

HSR Number	Group Standard
Not Applicable	Not Applicable

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

wood dust softwood is found on the following regulatory lists

New Zealand Workplace Exposure Standards (WES)

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantities
Not Applicable	Not Applicable

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	Yes
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	01/11/2019
Initial Date	04/12/2006

SDS Version Summary

SDS version Summary				
Version	Date of Update	Sections Updated		
3.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification		
3.1.2.1	29/04/2021	Regulation Change		
3.1.2.2	30/05/2021	Template Change		
3.1.2.3	04/06/2021	Template Change		
3.1.2.4	05/06/2021	Template Change		
3.1.2.5	09/06/2021	Template Change		
3.1.2.6	11/06/2021	Template Change		
3.1.3.6	14/06/2021	Regulation Change		
3.1.3.7	15/06/2021	Template Change		

Page 12 of 12 Biophos Issue Date: **01/11/2019**Print Date: **28/06/2021**

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

 ${\tt PC-STEL: Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard
OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.